US009110657B2

a2z United States Patent (10) Patent No.: US 9,110,657 B2
Yap 45) Date of Patent: Aug. 18, 2015
(54) FLOWCHART COMPILER FOR A 7,047,394 Bl 5/2006 Dyke et al.
COMPOUND COMPLEX INSTRUCTION SET ;3841;32 Eﬁ %883 Xandezlvteirdl
404, amodt et al.
COMPUTER (CCISC) PROCESSOR 7,409,670 Bl 8/2008 Pritchard et al.
ARCHITECTURE 7421,566 B2 9/2008 Gschwind et al.
7,478,224 B2 1/2009 Strom et al.
(71) Applicant: Tom Yap, Centennial, CO (US) 7,617,496 B2 11/2009 Gonion
7,818,547 B2 10/2010 Ae_tmodt et al.
(72) Inventor: Tom Yap, Centennial, CO (US) 7,873,953 Bl 12011 Pritchard et al.
7,941,790 B2 5/2011 Cabillic et al.
(*) Notice: Subject. to any disclaimer,. the term of this 22822:285 g% lffggﬁ (B;(l)lIllion
patent is extended or adjusted under 35 8,065,504 B2 11/2011 Yates et al.
U.S.C. 154(b) by 120 days. 8,127,121 B2 2/2012 Yates ct al.
8,161,444 Bl 4/2012 Pritchard
. 8,166,281 B2 4/2012 Gschwind et al.
(1) Appl. No.: 13/746,249 $281,100 B2 10/2012 Valentine et al.
(22) Filed: Jan. 21,2013 OTHER PUBLICATIONS
(65) Prior Publication Data Fryer et al., Microsoft Press Computer Dictionary, Microsoft Press,
US 2014/0208081 A1 Jul. 24, 2014 third ed., 4 pages.*
(51) Int.Cl * cited by examiner
GO6F 9/30 2006.01 .
rimary Examiner — Jo avis
(52) US.Cl () Primary Exami John Ch
CPC) GOGF 9/30145 (2013.01) (74) Attorney, Agent, or Firm — Duft Bornsen and Fettig,
(58) Field of Classification Search LLP
USPC ittt 717/140
See application file for complete search history. 67 ABSTRACT
Systems and methods herein provide for a compiler to create
(56) References Cited executable programs for a compound instruction based pro-
cessor directly from flowcharts. In one embodiment, a system
U.S. PATENT DOCUMENTS receives one or more flowchart diagram files that represent a
4,569,016 A 2/1986 Hao et al. computer program for a Compound CISC (CCISC) proces-
4,589,065 A 5/1986 Auslander et al. sor. The system identifies a flowchart symbol in the one or
4,589,087 A 5/1986 Auslander et al. more flowchart diagram files, identifies a computing category
g’gg;’i ég ﬁ i;}ggg g‘;ll(sztnal' for the flowchart symbol, and generates one or more CCISC
5371.860 A 12/1994 Mura et al. instructions based on the computing category for execution
5,471,593 A 11/1995 Branigin by the CCISC processor. Further, the one or more CCISC
5,544,342 A 8/1996 Dean instructions generated by the flowchart compiler direct the
5,508,546 A % 1/1997 Blomgren ..o 712/209 CCISC processor to access and operate on at least two data
g’?gg’égg ﬁ 12;3888 Sit:: ZE g%' values in a multi-channel memory during the same clock
6212629 Bl 4/2001 McFarland et al. cycle.
6,763,452 Bl 7/2004 Hohensee et al.
6,941,545 Bl 9/2005 Reese et al. 18 Claims, 37 Drawing Sheets

200

-

Receive Flow Chart Diagram
File(s) That Represent A Computer
Program For A CCISC Processor

s

!

[

Identify A Flow Chart Symbol In
The Flowchart Diagram File(s)

KB

!

Identify A Computing Category For
The Flowchart Symbol

@

Ce

!

204

Generate CCISC Instruction(s)
Based On The Computing
Category For Execution By A
CCISC Processor

N

US 9,110,657 B2

Sheet 1 of 37

Aug. 18, 2015

U.S. Patent

Sl
(s)uononisu|

0S100

33

<

Jajidwon ueyomol4

43

161
(s)aid
weibelq
Heyomo|4

0S1

|
|
|
|
> aoeo)U| ¢ [,
|
|
|

U.S. Patent

200

Aug. 18, 2015 Sheet 2 of 37

—_

Receive Flow Chart Diagram
File(s) That Represent A Computer
Program For A CCISC Processor

s

I

Identify A Flow Chart Symbol In
The Flowchart Diagram File(s)

L'\’
o
N

I

Identify A Computing Category For
The Flowchart Symbol

k_'\’
S
&

I

204

Generate CCISC Instruction(s)
Based On The Computing
Category For Execution By A
CCISC Processor

N

FIG. 2

US 9,110,657 B2

US 9,110,657 B2

Sheet 3 of 37

Aug. 18, 2015

U.S. Patent

sug
— 9
43

€ Old
MUl spoadO g A
0-4 8-Gl 9l -€2 ¥Z- 1€
sid sig sig sig

uoneoo ssalppy Alowspy weibold

101
Aowsy

weiboid

0000%0

4444%0

US 9,110,657 B2

Sheet 4 of 37

Aug. 18, 2015

U.S. Patent

psjeAloy
abuey

ssalppy

a0l1
sanjen

Eleq

v 'Old

dlll
$op02dQ

(geor)
g |]suueyd

YOL1
sanjen
ejeq

44X0

Vil
$op02dQ

08x0

(veor)
VY [suuey)

00x0

44%0

US 9,110,657 B2

Sheet 5 of 37

Aug. 18, 2015

U.S. Patent

pajeAdy
abuey <
ssalppy

a41d

aid++

++dild

--84d

(geon)
g lsuuey)

S 'Ol

snjejg

Vid

Yid++

++V¥ild

-Vid

(veor)
V [auuey)d

08%0

vd4x0
a4Xx0
04x0
asxo
34X0
44%0

US 9,110,657 B2

Sheet 6 of 37

Aug. 18, 2015

U.S. Patent

9 9I4

(shndino g (

s)induj jesayduiad

¥

e e W08 e __ 39010
s|essydiied < 3200 “ nduy
I
[
v
20¢€ e
onuoD M- ——1 M —p MOWBN
vaujac_ —> yueg ._wuw_mwﬂ_ unjtm__c_ ._l jood ENLOOL& |eua)xy
puY oIS _ Prv 1osed
|
4 _
_ I
508 v _ A
aulbug 90¢ |
asredwon anpol _
10j08A ¢ -], - -
- sselppy
youelg * o
90E puy Jaunoy |
weJboid NOV
nv
€0l 7 Y
I
: Tor
— I
||||||||||||]S
_ Js|joluoD D‘_MMM_\M_
Ndo <
O puy Jspooag | EPCO do
anvy |, 20090 -
< |
IE I
NoV VY |
— i * -
VEOE « ¥0¢ < g
V NVd Janoy ejeq |g
v
| _
PRI ¥4 001

S| A4

I

U.S. Patent Aug. 18, 2015 Sheet 7 of 37 US 9,110,657 B2

302

FIG.7

S —
o1 de
M P

T
e
L

Rk

US 9,110,657 B2

Sheet 8 of 37

Aug. 18, 2015

U.S. Patent

8 'OId

108

U.S. Patent Aug. 18, 2015 Sheet 9 of 37 US 9,110,657 B2

o
o
[op}
o
:
!
£
et i
&)
o
Il
g
ed
5
iy
o
44
it
2]
l(_IF
b t-4
214 20}
i
€1
<]
2
1
i
A
5k
AR
i 5 o
3
“l o o
—
w
Ea
I
o ;
Z‘i 5] 5]
ar
] u u u | |

U.S. Patent Aug. 18, 2015 Sheet 10 of 37 US 9,110,657 B2

1000

[
]
i

e L 60 Ve e N Ees | 5155 [cd

2
beg 111

4

2 E-4

51'.1 [7.4

z,f i

A

FIG. 10

Fly
¢ b4
[47]
kA -
i3 k-
%] J-41
i) £
a1
i
i
51
Ya
. £
51 9]
[i
[~ b1 ;‘/d
e o]
Jed [r4)
5]] i3
53 Jid] o

U.S. Patent

1100

Aug. 18, 2015

Sheet 11 of 37

US 9,110,657 B2

1103

Y

ooy
&
SOTT

ER

SR id S

3
UTRT™TI.TT
PN

. v
i &
] 3 iy

-] [

. 2 i

9 [¥
[JJ ;;: il
Iz 1l
[hos
]]]
i

FIG. 11

U.S. Patent Aug. 18, 2015 Sheet 12 of 37 US 9,110,657 B2

FIG. 12

=i
Bivhich =

1200
SILEENS

Trma o

o

U.S. Patent Aug. 18, 2015 Sheet 13 of 37 US 9,110,657 B2

FIG. 13

U.S. Patent Aug. 18, 2015 Sheet 14 of 37 US 9,110,657 B2

FIG. 14

o

pe

P

s
1)

U.S. Patent Aug. 18, 2015 Sheet 15 of 37 US 9,110,657 B2

(58 P o o) 10) O 1420 1+

il
=]

(29 el Leed el Ny S IE A A s

FIG. 15

U.S. Patent Aug. 18, 2015 Sheet 16 of 37 US 9,110,657 B2

FIG. 16

U.S. Patent Aug. 18, 2015 Sheet 17 of 37 US 9,110,657 B2

Fie

1701

FIG. 17

i
2
L2
H | ery £
% (6 el
[7]
f i3]
}?fi
5
- I}
i)

U.S. Patent

Aug. 18, 2015

Sheet 18 of 37

Lad iy 105

US 9,110,657 B2

FIG. 18

U.S. Patent Aug. 18, 2015 Sheet 19 of 37 US 9,110,657 B2

309

FIG. 19

U.S. Patent Aug. 18, 2015 Sheet 20 of 37 US 9,110,657 B2

i
L
#

et pos £on gens
¥

FIG. 20

i

il K2l 1l bd

FAN. NP ARAS

| et i ¥ a -
AN
W e

U.S. Patent Aug. 18, 2015 Sheet 21 of 37 US 9,110,657 B2

FIG. 21

p
il

U.S. Patent Aug. 18, 2015 Sheet 22 of 37 US 9,110,657 B2

FIG. 22

o
I-

i
Ir};
:

e

]
wel
o g 5
UAUA R Kl 7. o
m =
] i
3] i
5] frl
wl £
i
o [
b it
o
o1 " 59
2 .
i] &
24 52
; A lex | I | | | u
g 3]
I§ 2
i1 e
i1
Ivy
i34 |]
1]
L\)e
Vi
=

U.S. Patent Aug. 18, 2015 Sheet 23 of 37 US 9,110,657 B2

IEI¥ILESR

FIG. 23

)

i
FAN v
2y]
i
Ll
ka
@
]
Uit

U.S. Patent Aug. 18, 2015 Sheet 24 of 37 US 9,110,657 B2

TR ATTE
THRAIIEE
I

=2

FIG. 24

U.S. Patent Aug. 18, 2015 Sheet 25 of 37 US 9,110,657 B2

3
EENEEEER Ix]

et [red [rt [Lrd [lre X

e Vet Ech P S RTERN D9l e <4

e o

San e
onE

mrd
[iraied

FIG. 25

L
[oadl A
e
i 2
S O

i & g

“ e 2 G

Is k) El e

i o 5 g

= 4] [

i frs EOA
vl

]] |] gy

U.S. Patent Aug. 18, 2015 Sheet 26 of 37 US 9,110,657 B2

FIG. 26

U.S. Patent Aug. 18, 2015 Sheet 27 of 37 US 9,110,657 B2

FIG. 27

&

s -

r IS F-
oo ot |9
] £ 4
= b3 4]
1)

)

ik j

U.S. Patent Aug. 18, 2015 Sheet 28 of 37 US 9,110,657 B2

NRESTET

)
- oc:
£, 1
)
e
%]
i71
(4]
%
I
b
I

K

R

FIG. 28

e

9]

i

a1
]
kel
2]
H
2
B
G

11
i1
B;i
o
i
s
n
i n
i
%]
<
%
I
[
7
i
. kA
G 0
iy i3
[Lo
5
S i
A I
[
4
I il
“ v
5 %)
[
= i
¥
ii 65
[1£]
i

U.S. Patent Aug. 18, 2015 Sheet 29 of 37 US 9,110,657 B2

FIG. 29

I |
[
iy
9]
15y
a8}
u] H N

= i
o ol
“ #

U.S. Patent Aug. 18, 2015 Sheet 30 of 37 US 9,110,657 B2

& X1 L]

b~
®
W .
Q
Ty
e
]
£l it
i i
2 ¢
if] r_;
[} o
% e
[
4] R
A LA
i b
¥ B
3]
14
=4
ii

ATEIEYT

[.
il i
) n
£ .

US 9,110,657 B2

Sheet 31 of 37

Aug. 18, 2015

U.S. Patent

LE "OI4

1
2
1

il

[I

e D ERST T AT
TR LI WEEINIOS

U.S. Patent Aug. 18, 2015 Sheet 32 of 37 US 9,110,657 B2

49
L
1
[
]
]
[
ke
i1
o
% o
.
T
)
£
i}
[
)
w
]
. [
A [
of b
i oo
¥y (2]
4
P

U.S. Patent Aug. 18, 2015 Sheet 33 of 37 US 9,110,657 B2

pade il el

FIG. 33

U.S. Patent Aug. 18, 2015 Sheet 34 of 37 US 9,110,657 B2

Fivy
|

|
+
i wp
?I!]
]
o4 r"
[=
1 o
g
19
3]
1}
A
13

5
F.
[
B
i

4
4
o,
)
=9
(2]

FIG. 34

] 2
15
5
|
gt [
i 3
&
[
2]
A
{é\)’ el |
#ih AN
4
I)
[59] &)
. ir;,' ¢ 1,/ 51
%3 £ 4)
e ! 7 0 i
[bry) i |24
[o] i %) [
I [iv] 5 ¥ [#]
29 ki [is}
| | | | | | | |

US 9,110,657 B2

Sheet 35 of 37

Aug. 18, 2015

U.S. Patent

g€ "OId

T =
ERY s
<
THRIDEAL EoNy
THGINEAT R
<
THOINEST T Ny
AT U S B S &
- W — - - VI“}. -
FERIIEAT X g

=}

AT T YT S T - LY =
FAGIDEST oy
21
R
S v
B v - -, e R
AST §T IoAooa &MT

U.S. Patent Aug. 18, 2015 Sheet 36 of 37 US 9,110,657 B2

i

FIG. 36

US 9,110,657 B2

Sheet 37 of 37

Aug. 18, 2015

U.S. Patent

L€ "OId

ejeq uQ ajelsadO

eleq 821n0S puy
[—— uononuisu| oewolny Jo4 (9410 v

N

I~
(o]
I~
[s2]

1

\l “B9) |ouueyD U| SS2IPPY SS90V

\l ejled NV @SN

¢SsaIppy VY 193410

©
(e
I~
(a2

€0.L€

Eled NOY [els) asn

¢NOY
10 VY sY
apooa(

c0.LE

ﬁl 9poodO DSI0D UNM Ejeq sseooy

00.¢

US 9,110,657 B2

1
FLOWCHART COMPILER FOR A
COMPOUND COMPLEX INSTRUCTION SET
COMPUTER (CCISC) PROCESSOR
ARCHITECTURE

This patent application is related to commonly owned and
co-pending U.S. patent application Ser. No. 13/746,239 filed
herewith and entitted “COMPOUND COMPLEX
INSTRUCTION SET COMPUTER (CCISC) PROCESSOR
ARCHITECTURE”), the entire contents of which are incor-
porated by reference.

FIELD OF THE INVENTION

The invention relates to software compilers, and more spe-
cifically to a flowchart compiler for generating executable
code for a compound instruction set processor.

BACKGROUND

Computer architecture regards the basic structure ofa com-
puter from the standpoint of what exactly can be performed
by code written for the computer. Ordinarily, architecture is
defined by the number of registers in the Central Processing
Unit (CPU), the logic operations performed by the Arithmetic
and Logic Unit (ALU), etc. Usually, the architectural defini-
tion is expressed as an instruction set and its related elabora-
tion. Some computer architectures have been founded on
reduced instruction sets to provide performance advantages.
Complex Instruction Set Computer (CISC) processors and
Reduced Instruction Set Computing (RISC) processors are
two examples of such.

RISC processors have an architecture based on simplified
instructions capable of providing higher performance due to
faster execution of each instruction. The general concept is
that RISC processors use a small, highly-optimized set of
instructions, rather than a more specialized set of instructions
often found in other types of architectures. RISC processors
use a load/store architecture that allows memory to be
accessed by load and store operations with all values for an
operation being loaded from memory and present in registers.
After the operation, the result is stored back to memory.

CISC processors, on the other hand, are generally charac-
terized as having a larger number of instructions in their
instruction set, often including memory-to-memory instruc-
tions with complex memory accessing modes. The instruc-
tions are usually of variable length, with simple instructions
being only perhaps one byte in length with complex instruc-
tions being in the dozens of bytes in length. The size of an
operand specifier generally depends upon the addressing
mode, etc. The first byte of the operand specifier describes the
addressing mode for that operand, while the opcode defines
the number of operands. When the opcode itself is decoded,
the total length of the instruction is not yet known to the
processor because the operand specifiers have not yet been
decoded.

One advantage of CISC processors lies in the source code
that generally result in more work being done by the proces-
sor for each line of code. But, this comes at the expense of
execution time, more so when pipelining of instruction execu-
tion is necessary to achieve desired performance levels. The
advantage of RISC processors, therefore, lies in the speed of
execution of code, although less is accomplished by each line
of code.

During the software development process, a developer will
often “sketch out” the higher level details about how the
software will operate utilizing flowcharts. These higher level

10

15

20

25

30

35

40

45

50

55

60

65

2

details are an abstraction of the concepts of the software, such
that the developer may concentrate on the overall flow and
functionality of the software rather than the implementation
details for any particular development language or processor.
The developer will then attempt to translate the software
concepts captured in the flowcharts into a higher level text
based programming language, such as C, C++, Assembly
Language, Visual Basic, etc. The text based programming
language is then compiled into executable software for execu-
tion by the processor.

SUMMARY

Systems and methods herein provide for a compiler to
create executable programs for a compound instruction based
processor directly from flowcharts. Compound CISC, or
“CCISC”, overcomes the problems and tradeoffs associated
with RISC and CISC processors by executing complex
instructions, or opcodes, in a single clock cycle without incur-
ring penalties for using any combination of advanced
addressing modes. The flowchart compiler reads flowchart
diagram files, and interprets the flowchart symbols and
arrows connecting the symbols that are defined in the diagram
files to generate executable code for a CCISC processor. The
flowchart symbols may be grouped into different computing
categories, such as decision making, data manipulation, data
movement, predefined functions, function entry/exit, etc.,
such that the flowchart compiler may readily map the flow-
chart symbols to CCISC assembly language instructions or
combinations of CCISC assembly language instructions.
Because flowchart diagrams are easier to read and understand
than a high level text based language, both programmers and
non-programmers alike may readily recognize the software
concepts that are implemented by the flowcharts. Further,
flowcharts are a self-documenting graphical implementation
of the developed software, which helps programmers under-
stand pre-existing programs in less time than parsing though
a text based programming language.

Generally, the CCISC assembly language is broken into
four main types of opcodes which may be mapped to different
computing categories of flowchart symbols. Decision
opcodes may map to a flowchart decision category, and com-
pare two data values and conditionally branch to one branch
target address while executing in a single clock cycle. The
decision opcodes use a separate compare engine in a CCISC
processor and do not employ an accumulator. Data manipu-
lation, or “DMANIP”, opcodes may map to a flowchart data
manipulation category and include arithmetic and logical
operations that change data in some way. DMANIP opcodes
can use one, two, or three data values, and can perform its
operations directly from memory, again without employing
an accumulator. By using two data values and one target
address value, DMANIP opcodes can operate on two data
values and store the results in a third location in a Random-
access memory (RAM) bank. Data move, or “DMOV”,
opcodes may map to a flowchart data movement category and
can move data in the processor using two data values. The
DMOV is comparable to a Direct Memory Access (DMA) in
that the processor does not use an accumulator. Other pre-
defined opcodes may be mapped to a predefined function
category, and may be used to cover other instructions such as
CALL, RETURN, NOP, SLEEP, SETC, CLRC, etc. Addi-
tionally, some predefined instructions may be fixed within
certain address locations in memory so as to be address acti-
vated.

In one embodiment, a system is disclosed that includes an
interface and a flowchart compiler. The interface is operable

US 9,110,657 B2

3

to receive one or more flowchart diagram files that represent
a computer program for a Compound CISC (CCISC) proces-
sor. The flowchart compiler is operable to identify a flowchart
symbol in the one or more flowchart diagram files, to identity
a computing category for the flowchart symbol, and to gen-
erate one or more CCISC instructions based on the computing
category for execution by the CCISC processor, where the
one or more CCISC instructions are operable to direct the
CCISC processor to access and operate on at least two data
values in a multi-channel memory during the same clock
cycle.

The various embodiments disclosed herein may be imple-
mented in a variety of ways as a matter of design choice. For
example, the embodiments may take the form of computer
hardware, software, firmware, or combinations thereof. In
one embodiment, a method is operable within the processor
system to perform the functionality described herein. In
another embodiment, a computer readable medium is oper-
able to store software instructions that are operable to imple-
ment the various steps of the method. For example, the
executable program may be stored on a computer readable
medium so as to direct the processor to retrieve the opcodes
from the program memory and operate in the manner
described above. Other exemplary embodiments may be
described below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an exemplary system for
generating CCISC instructions from flowcharts.

FIG. 2 is aflowchart of an exemplary method operable with
the system of FIG. 1.

FIG. 3 illustrates an exemplary embodiment of program
memory operable with the CCISC processor of FIG. 1.

FIG. 4 illustrates an exemplary multichannel memory
operable with the CCISC processor of FIG. 1.

FIG. 5 illustrates exemplary predefined instructions within
the multichannel memory that are address range activated.

FIG. 6 is a block diagram of another exemplary embodi-
ment of the CCISC processor system.

FIGS. 7-36 illustrate various exemplary logic diagrams
used to implement components of the CCISC processor sys-
tem of FIG. 6.

FIG. 37 is a flowchart illustrating another embodiment of
the CCISC opcode processing.

DETAILED DESCRIPTION OF THE DRAWINGS

The figures and the following description illustrate specific
exemplary embodiments of the invention. It will thus be
appreciated that those skilled in the art will be able to devise
various arrangements that, although not explicitly described
or shown herein, embody the principles of the invention and
are included within the scope of the invention. Furthermore,
any examples described herein are intended to aid in under-
standing the principles of the invention, and are to be con-
strued as being without limitation to such specifically recited
examples and conditions. As a result, the invention is not
limited to the specific embodiments or examples described
below.

FIG. 1 is a block diagram of an exemplary system 150 for
generating CCISC instructions from flowcharts. The system
150 includes an interface 152 and a flowchart compiler 153.
The interface 152 comprises any system, component, or
device that is operable to receive one or more flowchart dia-
gram file(s) 151 that represent a computer program for a
CCISC processor as one or more flowcharts. The flowchart

10

15

20

25

30

35

40

45

50

55

60

65

4

compiler 153 comprises any system, component, or device
that is operable to generate CCISC instructions 154 based on
the flowchart(s) embodied in the flowchart diagram file(s)
151.

Discussion of the system 150 is now directed to the exem-
plary flowchart 200 illustrated in FIG. 2. In FIG. 2, the inter-
face 152 receives one or more flow chart diagram files 151
that represent a computer program for a CCISC processor in
a flowchart format, in the process element 201. Generally,
flowcharts include various symbols that describe high level
representations of a process, such as a computer program. The
flowcharts also include arrows that define how the symbols
are logically connected together. In other words, the arrows
define the flow of the overall process defined by the flowchart
symbols. The flowchart compiler 153 identifies a flow chart
symbol in the flow chart diagram files, in the process element
202. The flowchart compiler 153 then identifies a computing
category for the flowchart symbol, in the process element
203. The flowchart symbols may be grouped into different
computing categories, such as decision making operations,
data manipulation operations, data movement operations,
pre-defined function operations (e.g., processor or hardware
specific commands or operations), initiate/terminate labels
(e.g., a representation of the beginning or end of a subrou-
tine), manual input operations (e.g., a representation of data
definitions, constant values, and/or absolute address locations
to constant values defined in the computer program. Flow-
chart compiler 153 may readily map the flowchart symbols to
CCISC instructions (i.e., assembly language instructions)
154 or combinations of CCISC instructions 154.

The flowchart compiler 153 generates one or more CCISC
instructions 154 based on the computing category identified
for the flow chart symbol, in the process element 204. In this
embodiment, the CCISC instructions 154 generated by the
flowchart compiler 153 direct a CCISC processor (not shown
in FIG. 1) to access and operate on at least two data values in
a multi-channel memory (not shown in FIG. 1) during the
same clock cycle.

For decision making operations, the flowchart compiler
153 may generate one or more CCISC instructions 154 to
compare the two data values to branch to an address in pro-
gram memory. For data manipulation operations, the flow-
chart compiler 153 may generate one or more CCISC instruc-
tions 154 to change at least one of the data values in the
multichannel memory. For data movement operations, the
flowchart compiler 153 may generate one or more CCISC
instructions 154 to move one data value from a first address to
a second address in the multichannel memory. Examples of
each are shown and described in greater detail below.

For example, if a CCISC processor, when executing
CCISC instructions 154, determines that the instruction is a
decision instruction, DMANIP instruction, or a DMOV
instruction, then the CCISC processor accesses a first data
value from a channel A of the multichannel memory and a
second data value from a channel B of the multichannel
memory. The CCISC processor then operates on the first and
second data values in their respective locations of the multi-
channel memory based on the CCISC instruction. That is, the
CCISC processor does not utilize an accumulator or other
register to store the data values from the multichannel
memory such that the data values may be operated on and
then returned to the multichannel memory. Rather, the CCISC
processor operates on the data values directly within the
multichannel memory.

In some embodiments, the flowchart compiler 153 identi-
fies text within the flowchart symbol that defines computing
operations for the computing category. The flowchart com-

US 9,110,657 B2

5

piler 153 then generates the CCISC instructions 154 based on
the text. For example, the text may specify VAR3=VAR1+4
within a flowchart symbol residing in a data manipulation
category. In this case, the text conveys the specifics of the
computing operation to perform. In general, the rules for data
entry into a flowchart symbol may follow that of the C pro-
gramming language and many Assembly Languages. Upper
and lower case alpha characters may specify different vari-
ables. Further, different punctuation marks (e.g., +, —, =, <, >,
etc.,) may be used to denote mathematical operations.

Arrows generally illustrate program flow and execution
order within a flowchart program from one flowchart symbol
to another flowchart symbol. Using flowchart symbols and
arrows allows the programmer to readily recognize the flow
of the computer program without resorting to locating and
matching label names or other types of flow identifiers within
the typical text based programming languages.

To support the equivalent of labels, a flowchart program
may utilize a specialized terminal symbol. The terminal sym-
bol may have different meanings depending on whether an
arrow enters or exits the terminal symbol. A terminal symbol
with an arrow that exits to another non-terminal symbol may
indicate the beginning of a function or other subroutine. A
terminal symbol with an arrow that enters from another non-
terminal symbol may indicate an exit point for the subroutine.
Other arrow configurations may illustrate branching decision
paths within the flowchart program.

To provide more context, if the CCISC processor deter-
mines that the opcode is not a decision opcode, a DMANIP
opcode, or a DMOV opcode, then the CCISC processor deter-
mines whether the opcode is located in channel A of the
multichannel memory. Ifthe opcode is located in channel A of
the multichannel memory, then the CCISC processor
accesses the address where the instruction is located in chan-
nel A for automatic instruction or direction. Depending on an
address read from the A Field of the opcode, the CCISC
processor addresses Channel A of the multichannel memory.
If the address falls in a specific range of addresses, it causes
automatic instructions to initiate, in addition to the Decision,
DMOV, DMANIP operations implemented by their respec-
tive opcodes.

For example, the CCISC processor may process the opcode
and determine that the opcode is actually a particular address
in channel A of the multichannel memory. From there, the
CCISC processor may access that address in channel A of the
multichannel memory where a predefined instruction is
located. The address itself causes the automatic instruction to
operate with no further fetch of an opcode being necessary.
Examples of such predefined/automatic instruction include
pointer increments, status checks, etc. Thus, the opcode may
be “address actuated” and that the CCISC processor is auto-
matically directed to the address location in the channel A of
the multichannel memory for automatic instruction. If the
CCISC processor determines that the opcode is not located in
channel A of the multichannel memory , then the CCISC
processor accesses an address in channel B where the instruc-
tion is located for similar automatic instruction or direction.
In either case, after the address actuated instruction is
executed, the CCISC processor determines whether the pro-
gram is at its end again returning to process element if it is not
and progressing to process element if so.

To summarize, the decision, DMOVE, DMANIP, and pre-
defined opcodes read the A and B data sources. Depending on
the automatic instruction to determine where the data is
located, the opcodes provide additional operations, such as

10

20

40

45

50

55

6

pointer manipulation. And, there are two sets of “address
actuated” circuits that provide automatic instructions for both
the A and B data sources.

FIG. 3 illustrates an exemplary embodiment of a program
memory 101 operable with a CCISC processor (see e.g., F1G.
6). In this embodiment, the program memory 101 is a 32-bit
wide memory having addresses of 0x0000 through OxFFFF
(i.e., 65,536 addresses). Each 32-bit word in the program
memory 101 is subdivided into four 8-bit fields, comprising
the A field (bits 31-24), the B field (bits 23-16), the opcode
field (bits 15-8) and the link field (bits 7-0). The A field
provides the data or address of channel A in A multichannel
memory 103 (FIG. 6) during an instruction fetch for the
current CCISC instruction of the executable program being
processed by the CCISC processor. The B field similarly
provides the data or address of channel B in the multichannel
memory 103 during the instruction fetch. The opcode field
provides the operation code during the instruction fetch. The
link field provides address data during the instruction fetch as
well as target addresses within the multichannel memory 103
for a DMANIP opcode or a decision opcode. The link field
may also be used for various predefined opcodes that are
address actuated in the multi-channel memory 103.

FIG. 4 illustrates the multichannel memory 103 operable
with the CCISC processor. For the purposes of illustration,
the multichannel memory 103 is illustrated as two separate
channels 103A and 103B representing the channels A and B
described above. In this embodiment, channels A 103A and B
103B have address ranges from 0x00 to OxFF (i.e., 256
addresses). Each channel 103A and 103B is designated with
two sections, data values 110 for addresses Ox7F and below,
and address range activated opcodes for addresses 0x80 and
above. The data values 110A and 110B may be used to store
any data values required by the executable program, much
like any other processing system. One difference between
prior art processing systems and the present processing sys-
tem is that the CCISC processor operates on the data values
directly within the channels 103 A and 103B ofthe multichan-
nel memory 103. In the opcode sections 111A and 111B, the
channels 103A and 103B store their respective predefined
opcodes. An example of such is illustrated in FIG. 5.

FIG. 5 illustrates exemplary predefined instructions within
the multichannel memory 103 that are address range acti-
vated. For example, when the CCISC processor is directed to
access address OxFF in channel 103A of the multichannel
memory 103, the CCISC processor is automatically directed
to perform a pointer decrement (PtrA—-) within the channel
103A. Similarly, when the CCISC processor is directed to
access address OxFF in channel 103B of the multichannel
memory 103, the CCISC processor is automatically directed
to perform a pointer decrement (PtrB--) within the channel
103B. Other examples of predefined opcodes include STA-
TUS, CALL,RETURN, NOP, SLEEP, SETC, CLRC, pointer
increments, such as Ptr++ and ++Ptr, and indirect address
accesses through pointers (e.g., PtrA and PtrB). Of course, the
invention is not intended to be limited to any particular
address allocation or type of opcode being configured within
the channels 103A and 103B of the multichannel memory
103.

FIG. 6 is a block diagram of another exemplary embodi-
ment of the CCISC processor system 100. The processor
system 100 includes the program memory 101 of FIG. 1 as
well as the multichannel memory 103 configured as a dual
channel RAM bank adding channels 303A and 303B and a
RAM Address Generation Unit (RAM AGU) 312. The
CCISC processor is configured from the reset and program
boot loader 301 (boot loader 301), a clock 302, a data router

US 9,110,657 B2

7

304, an opcode decoder and CPU controller 305, an AGU
program counter and branch address vector module 306
(AGU), a stack and interrupt control module 307, an algorith-
mic logic unit (ALU) 308, a compare engine 309, and a
register bank input/output (/O) 310. The CCISC processor
may be optionally coupled to peripherals 311, such as other
devices or computing modules.

The clock 302 provides timing control and uses an input
clock and an input clock shifted by 90 to create four quadra-
ture clocks without clock multiplying. The lower speed input
clocks save power and creates quadrature clocks Q1, Q2,Q3,
Q4, as illustrated in FIG. 7 with references numbers N9Q1N-
N9Q4N.

The boot loader 301 is coupled to the program memory 101
to initiate operations of the CCISC processor. The boot loader
301 controls the reset of the CCISC processor and each of its
control registers. A “RESET” opcode provides “power-up
and time-out counters” that hold the CCSIC processor in reset
while a power supply (not shown) stabilizes. The RESET
clears internal processor control registers and sets default
power-up conditions. In addition to being coupled to the
program memory 101, the boot loader 301 may be coupled to
external memory, such as a serial Electrically Erasable Pro-
grammable Read-Only Memory (EEPROM), through a serial
peripheral interface (SPI) to boot the CCISC processor,
although the processor system 100 may be configured with
internal non-volatile memory.

Once the boot loader 301 is initialized and activated, the
boot loader 301 may reset the program counter of the AGU
306 to 0x0000. The boot loader 301 then reads the external
memory and writes the data into the program memory 101.
The boot loader 301 loads the program memory 101 with
executable code and then passes control to the AGU 306
which starts at the address 0x0000.

The boot loader 301 may be configured with a variety of
modules, such as a shift register generator/control 800 illus-
trated in FIG. 8, an output shift register 900 illustrated in FI1G.
9, an input shift register 1000 illustrated in FIG. 10, and a boot
loader control 1100 illustrated in FIG. 11. The shift register
generator/control 800 interfaces to the program memory 101
and includes a clock generator 801 that provides the clock for
the SPI interface. A clock inter-burst delay counter 802 pro-
vides for a delay between bursts of SPI clocks. The initialize
and lockout feed forward module 803 establishes the SPI state
machine for reading the external memory contents before
passing control to the CCISC processor. The clock counter
804, in general, counts every 4 external data bytes for writing
into the program memory 101. The output and input shift
registers of and state machines to communicate with a SPI
interface. The output shift register 900 of FIG. 9 uses a SPI
“Data Shift Out” to output data from the external memory for
serial communications, but is generally not needed when
booting is performed from the program memory 101.

The boot loader control 1100 enables the start state of the
bootloader 301 from RESET and detects the end state. A boot
loader enable module 1101 enables the state of the boot loader
301 and disables the state of the boot loader 301 when passing
control to the AGU 306 and CCISC processor in general.
Also, at the beginning of the state of the boot loader 301, all
instruction execution is generally locked out. A power up
enable module 1102 is activated by the external RESET sig-
nal and provides a power up and reset of the loader 301 and
the CCISC processor in general. A stabilizer counter 1103
provides delay for voltage stabilization purposes at RESET.

A state machine counter 1200 counts the number of bytes
loaded from the external memory and signals when to stop
downloading (i.e., TOTAL BYTES COUNTER). The end of

40

45

55

8
the download state is also provided by the RESET. The “EE
CHIP SELECT” drives the selection from external memory
and the program memory 101. A logical high between third
and fourth clock cycles enables a continuous read operation
from the external memory.

The AGU 306 addresses the program memory 101 for
fetching the CCISC opcodes to execute. One example of the
AGU 306 is illustrated in FIG. 13. The program counter 1307
generates addresses for the program memory 101 and can be
altered by a branch type of instruction (e.g., branch addresses,
CALL and RETURN subroutines, absolute addressing,
and+relative branch addressing) or by address vector (e.g.,
interrupt vector addressing). In one embodiment, the program
counter 1307 address of the AGU 306 is 16 bits wide, having
64K address range, starting at 0x0000 after RESET, and
generally counting up from there. A branch control input
module 1308 is used for loading branch addresses into the
AGU 306. A “4-cycle” control module supports the boot
loader 301 to write data from the external memory to be
program memory 101 on a byte to byte basis.

The stack and interrupt control module 307 is coupled to
the AGU 306 to provide an address stack for storing return
addresses during function calls or address vector events, such
as interrupts. The stack and interrupt control module 307
includes the address stack and muxes for use with the AGU
306 and the program counter 1307 thereof. In one embodi-
ment, the stack is a 128x16 address stack with 128 16-bit
entries having a self-contained stack control and a return
address with a plus or minus 7 bit offset. An example of the
stack and interrupt control module 307 is illustrated in FIG.
14, including interrupt control block for containing the inter-
rupt enable/disable control, an interrupt edge synchronizer,
and an interrupt vector address. The stack and interrupt con-
trol module 307 activates the interrupt and loads the interrupt
address vector into the AGU 306 upon receiving an interrupt
request. Upon executing a RETURN from interrupt, the
return address is loaded from the stack and the interrupt is
turned off. For example, the subroutine RETURN may
restore a return address plus 1 or some other offset value from
the address stack.

The stack and interrupt control module 307 also includes
an interrupt state machine that senses and synchronizes inter-
rupt signals restores ACC (i.e., Accumulator) and STATUS.
Data upon an existing interrupt mode, and is relatively fast
with 174 to 24 clock interrupt latency. Additionally, the stack
and interrupt control module 307 controls RAM A 303A and
RAM B 303B for automatic saving ACC and STATUS data
during interrupts. An example of such as illustrated in FIG.
14. The stack and interrupt control module 307 also supports
the subroutine CALL while saving the return address on the
stack.

As mentioned, the program memory 101 may be 32 bits
wide to accommodate 32 bit CCISC opcodes. To provide the
opcodes to the processor, the program memory 101 may be
configured with an opcode ROM and link ROM with write
data for these ROMs coming from the boot loader 301 and the
input shift register 1000 thereof. An example of such is illus-
trated in FIG. 15. To decode the opcodes, the CCISC proces-
sor employs the opcode decoder and CPU controller 305. The
decoder/CPU controller 305 block reads opcode fields from
the program memory 101 to decode current CCISC instruc-
tions. Decoder/CPU controller 305 also controls basic data
routing for the A and B data fields of the CCISC instructions
(i.e., for the RAMs 303A and 303B).

FIG. 16 illustrates an instruction register 1601 which holds
a current opcode. The decoder/CPU controller 305 is the
module of the CCISC processor that decodes the four types of

US 9,110,657 B2

9

CCISC instructions (i.e., decision opcodes, DMANIP
opcodes, DMOV opcodes, and the predefined opcodes such
as CALL, RETURN, NOP, SLEEP, SETC, CLRC, etc.). The
decoder/CPU controller 305 can enable and disable all
CCISC instructions within the CCISC processor. FIG. 17
illustrates a decision instruction decoder module 1701 of the
decoder/CPU controller 305. The decision instruction
decoder module provides decisions for <, =, >, <=, != and >=
comparison operations. The decision instruction decoder
module 1701 also decodes “branch always” decision opcodes
and provides for branch enable flip-tlop.

The data router 304 provides multiple data sources for the
A and B data fields of the CCISC instructions. Internal A and
B data buses may each be driven by a 4-input, 8-bit data mux
to provide four data sources for the A and B data fields for
each ofthe CCISC instructions. The data router 304 combines
data routing with advanced addressing modes to provide the
CCISC processor with many data source possibilities for each
of the A and B data fields. The data router 304 multiplexes
data sources for the A and B data fields (e.g., ROM A and
RAM A of the program memory 101 for the A data field and
ROM B, RAM B, and system buffer other program memory
101 for the B data field. Data muxes of the data router 304
provide for direct memory access to the RAMs 303A and
303B and may even swap data between the RAMs 303 A and
303B. Write data for these data fields may be delivered by the
loader 301 and the input shift register 1000 thereof. An
example of the multiplexing by the data router 304 is illus-
trated in FIG. 18.

The link bus 321, A bus 322, and the B bus 323 are internal
8-bit address buses coupling RAMs 303A 303B with various
modules of the CCISC processor. It should be noted that this
is a significant difference from other processors particularly
8-bit processors. More specifically, the A bus 322 is coupled
to the RAM 303 A and the B bus 323 is coupled to the RAM
303B such that the RAMs 303A and 303B provide a dual
scratchpad for the CCISC processor. The output from the data
router 304 drives the A bus 322 and the B bus 323 to support
internal compound data. The link field of the link bus 321 is
driven from the program memory 101 to provide provides
single cycle writes and branches. The link bus 321 can also be
used for addressing offset accesses.

The RAM AGU 312 provides complex addressing and
intelligent memory functions. The RAM AGU 312 provides
independent and simultaneous use of two different address-
ing modes for each CCISC construction. For example, the
RAM AGU 312 may be configured to independently access
each of the RAMs 303 A and 303B. The RAM AGU 312 also
provides indirect pointer and pre/post use pointer manipula-
tion as discussed above. In one embodiment, pointer registers
are implemented with up-and-down counters, but can be
implemented using an adder for different increment/decre-
ment offsets. The independent pointer manipulation by the
RAM AGU 312 reduces clock cycles for the CCISC proces-
sor. Predefined pointers within the RAMs 303A and 303B
also offload execution from the CCISC processor by pushing
such processing onto the RAM AGU 312. As mentioned
above, the RAMs 303A and 303B may be configured with
256 8-bit locations with the lower 128 locations being directly
addressable and the upper 128 locations being indirectly
addressable. However, the memory can be extended and/or
the locations may be configured as a matter of design choice.

The ALU 308 supports DMANIP CCISC instructions of
the CCISC processor. The ALU 308 provides functionality
such as add, subtract, shift/rotate left, shift/rotate right, logi-
cal AND, logical OR, and logical XOR as well as carry and
zero flags. Bit testing decision instructions use the ALU to

10

15

20

25

30

35

40

45

50

55

60

65

10

perform a logical AND with the contents of a data field and
the bit mask to test for one or more bits being set or cleared.

The ALU 308 is operable to test for several bits at once in
a single clock cycle. For example, if the results of an AND is
equal to 0, then all of the bits are cleared. If the results of the
AND is not equal to 0, then at least one bitis set. The AL U 308
also uses auto count and test decision instructions to perform
an ADD with the contents of a data field and 0x01 or OxFF
(negative 1) to support auto-count modes and checking for
counter expiration. For example, if the result of an increment/
decrement is equal to O, then the count is rolled over to 0. If,
however, the result of an increment/decrement is not equal to
0, then the count is not rolled over to 0. Outputs of the ALU
308 are routed back to the A and B field data muxes describes
above. This makes the results of ALU 308 functions available
to either the A or B fields for use in CCISC instructions.

The compare engine 309 accesses data of the A and B fields
such that it can compare any two data values from multiple
data sources in a single clock cycle. An example of the com-
pare engine 309 is illustrated in FIG. 19. As shown in FIG. 19,
the compare engine 309 provides for comparison operations
without the use of an accumulator. Such reduces logic gates
by not running compares through the ALU 308. This also
reduces clock cycles by using single cycle comparisons for all
possible data source. A and B field data latches hold data read
from A and B field buses 322 and 323, respectively, to the
compare engine 309. Thus, the compare engine 309 is oper-
able to connect the A and B field buses 322 and 323 to various
components within the CCISC processor including onboard
peripherals 311 and their various inputs and outputs. In one
embodiment, the compare engine 309 uses and 8-bit magni-
tude comparator to provide results of the six standard com-
parisons: <, =, >, <=, != and >= of the A and B field data.

FIG. 20 illustrates the multiplexing of the A and B data
fields. That is, various A field data and B field data sources are
multiplexed onto the A and B field buses 322 and 323. For
example, A field data from an A field data source, such as
ROM A data from the A field of the program memory 101,
RAM A data from RAM 303A (including address accessible
features), register data from multiple registers in RAM A
address space, and accumulator data from an accumulator
driven onto the A field bus 322. Similarly, B field data sources
may be obtained from ROM B data from B field of the
program memory 101, RAM B data from RAM 303B (includ-
ing address accessible features), a system bufter, and accu-
mulator data from an accumulator driven onto the B field bus
323.

FIG. 21 illustrates DMOVE instructions that are decoded,
including the decoding of move and translate DMOVE
instructions, and for moves relating to the loading of address
range activated registers in the RAM 303A and 303B. The
DMOVE provides data movement from any A sources to B
destinations and from any B sources to A destinations. The
CCISC instructions also provide for swapping A and B data
via a SWAP instruction. In this embodiment, move and trans-
late DMOVE instructions provide for A and B address ranges
in upper and lower nibbles. The register bank I/O 310 pro-
vides a memory map of the RAM A address space, from 0x80
to OxFF in one embodiment.

The A field, B field, and link field data/address fields con-
nect to the register bank 1/O 310 with the A field for being
used for data transfer, the B field being used for data and
addressing, and the link field being used for addressing and
offset addressing. The register bank 310 may also provide a
system buffer in the RAM 303B address space. Examples of
such are illustrated in FIGS. 22 and 23 for the A and B data

US 9,110,657 B2

11

fields, respectively, using the previously mentioned 256x8
RAM of which 128 are directly addressable and 128 are
indirectly addressable.

FIGS. 24-36 illustrate various exemplary implementations
of some of the functional aspects of the components
described above. FIG. 24 illustrates how the above-men-
tioned address range activated features of the RAM 303 A and
303B may be implemented. For example, the address range
activated features of the RAM 303 A and 303B address spaces
may allow for independent decoding by the ALU 308 of the
RAM address spaces thus providing for simultaneous and
compound use of the address spaces.

FIG. 25 illustrates how the ALU 308 may decode DMA-
NIP instructions including add, subtract, left shift/rotate, and
right shift/rotate operations as well as the logical AND, OR,
XOR operations. FIG. 26 illustrates how the ALU 308 may
implement the left/shift rotate, the right shift/rotate, and the
logical AND operations as well as the DMOVE operations
(i.e., move and translate). The move and translate section
includes the A and B data fields for the shift and DMOVE
operations. In this embodiment, the ALLU 308 is operable to
translate upper and lower 4-bit hex nibbles from the A and B
data fields into 8-bit ASCII using a single DMOVE instruc-
tion in one clock cycle. FIG. 27 illustrates an 8-bit adder/
subtracter module that is operable to add, subtract, and pro-
vide logical OR and logical XOR operations.

FIG. 28 illustrates accumulator functionality of the ALU
308. This functionality provides the AL U 308 with ability to
route data mux results of the AL.U 308 to various components
including the RAMs 303A and 303B. FIG. 29 illustrates zero
flag and carry flag functionality of the AL.U 308 which may be
used to indicate results of the operations of the AL U 308.

FIG. 30 illustrates decoding of decision operations by the
decoder/CPU controller 305. The decoder/CPU controller
305 is operable to decode bit testing and auto-count testing of
CCISCs decisions as well as including bit testing and auto-
count testing branch control logic.

FIG. 31 illustrates an indirect pointer A register, part of the
RAM AGU 312 that indexes the RAM A address space of the
RAM 303A. This functionality provides control of pre and
post increment/decrement of pointer register values. FIG. 32
illustrates an indirect pointer B register, part of the RAM
AGU 312 that indexes the RAM B address space of the RAM
303B, also providing control of pre and post increment/dec-
rement of pointer register values.

FIG. 33 illustrates system control register functionality of
the CCISC processor, including decoding for the register,
configuring CARRYs in various operations, controlling con-
figurations of shifters, and enabling and disabling interrupts.

FIG. 34 illustrates an interrupt request state machine that
synchronizes an interrupt event’s edge with the clock 302.
The state machine also controls the active state of interrupts
by activating an interrupt address vector and the AGU 306.
FIG. 35 illustrates an interrupt request address vector and
mux that maintains the interrupt request vector address val-
ues. Generally a single vector is employed at any given time
but other vector addresses can be muxed together.

FIG. 36 illustrates predefined decodes used by the decoder/
CPU controller 305 to decode CALL, RETURN, Decodes Set
CARRY, and Clear CARRY CCISC instructions. This func-
tionality also provides for decoding software interrupt
instructions and interrupt request returns for exiting interrupt
modes of operation, as well as an enabling and disabling
interrupts via an IRQCLR.

FIG. 37 is a flowchart 3700 illustrating another embodi-
ment of the CCISC opcode processing. In this embodiment,
the flowchart 3700 illustrates how a data source is determined

10

15

20

25

30

35

40

45

50

55

60

65

12

for both the channel A data field and the channel B data field
during the CCISC opcode decoding and prior to instruction
execution. For the purposes of this embodiment, it is assumed
that the CCISC processor received a CCISC opcode from
program memory containing the A field, the B field, the
opcode field and the link field. In this regard, the CCISC
processor accesses data with the CCISC opcode in the pro-
cess element 3701. It should be noted that the flowchart 3700
is generally applicable to both the channel A field and the
channel B field. The data source determination action for the
A field and the B field are “compounded” and happen in
parallel with opcode decoding. It should also be noted that
each CCISC opcode contains two bit flags to indicate whether
the A field data and the B field data represents “literal data”
(referred to as ROM) or represents an “Address” (referred to
as RAM).

The CCISC processor, based on opcode decoding, deter-
mines whether the data in the A and the B fields decoded as
ROM (i.e., literal data) or RAM (i.e., addressable variable
data), in the process element 3702. If the data in the A field is
decoded as ROM, the CCISC processor uses the A field data
as a literal data constant, in the process element 3705. The
source of data for channel A is the data given in the A field
from program memory 101.

If the data in the A field is decoded as RAM, the CCISC
processor determines that the A field data represents an
address value and determines where the address is located, in
the process element 3706 (e.g., between 0x00 to 0x7f or 0x80
to Oxff). That is, the CCISC processor determines that the A
field contains an address in the range of 0x00 to Ox7f, which
addresses RAM. The CCISC processor uses the A field data
as an address to RAM A memory. The source of data for
channel A comes from an appropriate RAM 103 memory
location (e.g., A or B).

If the data in the A field is decoded as an address in the
range of 0x80 to Oxff, the CCISC processor addresses the
address range activated features discussed above, in the pro-
cess element 3704. The CCISC processor uses the A Field
data as an address to address range activated features includ-
ing multiple forms of indirect RAM 103 memory addressing
and other automatic instructions, again depending on the
source A or B. The CCISC processor operates on the data in
the process element 3707.

While the invention has been illustrated and described in
detail in the drawings and foregoing description, such illus-
tration and description is to be considered as exemplary and
not restrictive in character. Certain embodiments described
hereinabove may be combinable with other described
embodiments and/or arranged in other ways. Accordingly, it
should be understood that only the preferred embodiment and
variants thereof have been shown and described and that all
changes and modifications that come within the spirit of the
invention are desired to be protected.

What is claimed is:

1. A system comprising:

a processor configured to receive one or more flowchart
diagram files that represent a computer program for a
Compound CISC (CCISC) processor;

the processor further configured to identify a flowchart
symbol in the one or more flowchart diagram files, to
identify a computing category for the flowchart symbol,
and to generate one or more CCISC instructions based
on the computing category for execution by the CCISC
processot,

US 9,110,657 B2

13

wherein the one or more CCISC instructions are operable
to direct the CCISC processor to access and operate on at
least two data values in a multi-channel memory during
the same clock cycle.
2. The system of claim 1 wherein:
the processor is further configured to identify text within
the flowchart symbol that defines one or more comput-
ing operations for the computing category, and to gen-
erate the one or more CCISC instructions based on the
text and the computing category.
3. The system of claim 1 wherein:
the computing category comprises a decision making
operation; and
the processor is further configured to generate the one or
more CCISC instructions to compare the at least two
data values to branch to an address in the program
memory.
4. The system of claim 1 wherein:
the computing category comprises a data manipulation
operation; and
the processor is further configured to generate the one or
more CCISC instructions to change at least one of the
data values in the multichannel memory.
5. The system of claim 1 wherein:
the computing category comprises a data movement opera-
tion; and
the processor is further configured to generate the one or
more CCISC instructions to move at least one data value
from a first address to a second address in the multichan-
nel memory.
6. The system of claim 1 wherein:
the processor is further configured to identify a first flow-
chart symbol in the flowchart diagram file, to identify a
second flow chart symbol in the flowchart diagram file,
and to identify a process flow based on a direction of an
arrow between the first flowchart symbol and the second
flow chart symbol;
the processor is further configured to generate a first set of
one or more CCISC instructions based on a computing
category for the first flowchart symbol, to generate a
second set of one or more CCISC instructions based on
a computing category for the second flowchart symbol,
and to define an execution order for the first and second
set of CCISC instructions based on the identified process
flow between the first flowchart symbol and the second
flowchart symbol.
7. A method comprising:
receiving, by an interface device, one or more flowchart
diagram files that represent a computer program for a
Compound CISC (CCISC) processor;
identifying, by a flowchart compiler device, a flowchart
symbol in the one or more flowchart diagram files;
identifying, by the flowchart compiler device, a computing
category for the flowchart symbol; and
generating, by the flowchart compiler device, one or more
CCISC instructions based on the computing category for
execution by the CCISC processor, wherein the one or
more CCISC instructions direct the CCISC processor to
access and operate on at least two data values in a multi-
channel memory during the same clock cycle.
8. The method of claim 7 wherein:
the method further comprises:
identifying, by the flowchart compiler device, text
within the flowchart symbol that defines one or more
computing operations for the computing category;
and

10

15

20

25

30

35

40

45

50

55

60

65

14

generating, by the flowchart compiler device, the one or
more CCISC instructions further comprises:
generating the one or more CCISC instructions based on
the text and the computing category.
9. The method of claim 7 wherein:
the computing category comprises a decision making
operation; and generating, by the flowchart compiler
device, the one or more CCISC instructions further com-
prises:
generating the one or more CCISC instructions to compare
the at least two data values to branch to an address in the
program memory.
10. The method of claim 7 wherein:
the computing category comprises a data manipulation
operation; and
generating, by the flowchart compiler device, the one or
more CCISC instructions further comprises:
generating the one or more CCISC instructions to
change at least one of the data values in the multichan-
nel memory.
11. The method of claim 7 wherein:
the computing category comprises a data movement opera-
tion; and
generating, by the flowchart compiler device, the one or
more CCISC instructions further comprises:
generating the one or more CCISC instructions to move
at least one data value from a first address to a second
address in the multichannel memory.
12. The method of claim 7 wherein:
identifying, by the flowchart compiler device, a flowchart
symbol further comprises:
identifying a first flowchart symbol in the flowchart dia-
gram file;
identifying a second flow chart symbol in the flowchart
diagram file; and
identifying a process flow based on a direction of an
arrow between the first flowchart symbol and the sec-
ond flow chart symbol; and
generating, by the flowchart compiler device, the one or
more CCISC instructions further comprises:
generating a first set of one or more CCISC instructions
based on a computing category for the first flowchart
symbol;
generating a second set of one or more CCISC instruc-
tions based on a computing category for the second
flowchart symbol; and
defining an execution order for the first and second set of
CCISC instructions based on the identified process
flow between the first flowchart symbol and the sec-
ond flowchart symbol.
13. A non-transitory computer readable medium embody-

ing programmed instructions which, when executed by pro-
cessor, direct the processor to:

receive one or more flowchart diagram files that represent
a computer program for a Compound CISC (CCISC)
processor;

identify a flowchart symbol in the one or more flowchart
diagram files;

identify a computing category for the flowchart symbol;
and

generate one or more CCISC instructions based on the
computing category for execution by the CCISC proces-
sor, wherein the one or more CCISC instructions direct
the CCISC processor to access and operate on at least
two data values in a multi-channel memory during the
same clock cycle.

US 9,110,657 B2

15

14. The medium of claim 13 wherein:
the instructions further direct the processor to:
identify text within the flowchart symbol that defines
one or more computing operations for the computing
category; and
generate the one or more CCISC instructions based on
the text and the computing category.
15. The medium of claim 13 wherein:
the computing category comprises a decision making
operation; and
the instructions further direct the processor to:
generate the one or more CCISC instructions to compare
the at least two data values to branch to an address in
the program memory.
16. The medium of claim 13 wherein:
the computing category comprises a data manipulation
operation; and
the instructions further direct the processor to:
generate the one or more CCISC instructions to change
at least one of the data values in the multichannel
memory.
17. The medium of claim 13 wherein:
the computing category comprises a data movement opera-
tion; and

10

15

20

16

the instructions further direct the processor to:
generate the one or more CCISC instructions to move at
least one data value from a first address to a second
address in the multichannel memory.
18. The medium of claim 13 wherein:
the instructions further direct the processor to:
identify a first flowchart symbol in the flowchart dia-
gram file;
identify a second flow chart symbol in the flowchart
diagram file;
identify a process flow based on a direction of an arrow
between the first flowchart symbol and the second
flow chart symbol;
generate a first set of one or more CCISC instructions
based on a computing category for the first flowchart
symbol;
generate a second set of one or more CCISC instructions
based on a computing category for the second flow-
chart symbol; and
define an execution order for the first and second set of
CCISC instructions based on the identified process
flow between the first flowchart symbol and the sec-
ond flowchart symbol.

#* #* #* #* #*

